Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Indian J Biochem Biophys ; 2001 Dec; 38(6): 353-60
Article in English | IMSEAR | ID: sea-27243

ABSTRACT

UDP-galactose 4-epimerase from Escherichia coli is a homodimer of 39 kDa subunit with non-covalently bound NAD acting as cofactor. The enzyme can be reversibly reactivated after denaturation and dissociation using 8 M urea at pH 7.0. There is a strong affinity between the cofactor and the refolded molecule as no extraneous NAD is required for its reactivation. Results from equilibrium denaturation using parameters like catalytic activity, circular-dichroism, fluorescence emission (both intrinsic and with extraneous fluorophore 1-aniline 8-naphthalene sulphonic acid), 'reductive inhibition' (associated with orientation of NAD on the native enzyme surface), elution profile from size-exclusion HPLC and light scattering have been compiled here. These show that inactivation, integrity of secondary, tertiary and quaternary structures have different transition mid-points suggestive of non-cooperative transition. The unfolding process may be broadly resolved into three parts: an active dimeric holoenzyme with 50% of its original secondary structure at 2.5 M urea; an active monomeric holoenzyme at 3 M urea with only 40% of secondary structure and finally further denaturation by 6 M urea leads to an inactive equilibrium unfolded state with only 20% of residual secondary structure. Thermodynamical parameters associated with some transitions have been quantitated. The results have been discussed with the X-ray crystallographic structure of the enzyme.


Subject(s)
Binding Sites , Chromatography, High Pressure Liquid , Circular Dichroism , Dimerization , Enzyme Reactivators/pharmacology , Escherichia coli/enzymology , Kinetics , NAD/metabolism , Protein Conformation , Protein Denaturation , Protein Folding , Thermodynamics , UDPglucose 4-Epimerase/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL